Monocarbaborane chemistry. Preparation and characterisation of [4-CB₈H₉]⁻, the 'missing' *closo*-carbaborane anion[†][‡]

Tomáš Jelínek,^{*a*} Bohumil Štíbr,^{*b*} Josef Holub,^{*c*} Mario Bakardjiev,^{*c*} Drahomír Hnyk,^{*c*} Daniel L. Ormsby,^{*d*} Colin A. Kilner,^{*a*} Mark Thornton-Pett,^{*a*} Hans-Jörg Schanz,^{*b*} Bernd Wrackmeyer^{*b*} and John D. Kennedy^{**a*}

- ^a School of Chemistry of the University of Leeds, West Yorkshire, UK LS2 9JT
- ^b Laboratorium für Anorganische Chemie der Universität Bayreuth, Postfach 101251, Bayreuth, Bayern D-95440, Germany
- ^c Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, 25068, Řež-by Prague, The Czech Republic
- ^d Department of Chemistry of the Imperial College of Science, Technology and Medicine, Exhibition Road, London, UK SW7 2AY

Received (in Cambridge, UK) 17th April 2001, Accepted 25th June 2001 First published as an Advance Article on the web 20th August 2001

Thermolysis in the solid state of $Cs^+[arachno-CB_9H_{14}]^-$, or of $Cs^+[nido-CB_9H_{12}]^-$, or the oxidation of $nido-1-CB_8H_{12}$ with I₂ in THF at -78 °C in the presence of NEt₃, gives the first nine-vertex *closo* monocarbaborane, the stable [*closo*-4-CB₈H₉]⁻ anion, in yields of 56, 61 and 75%, respectively.

Although carbaborane chemistry is the most investigated area of polyhedral boron-containing cluster chemistry,^{1,2} it is dominated by dicarbaborane chemistry. Monocarbaborane chemistry, by contrast, is sparsely represented,1 and many of the fundamental cluster types are unreported. Of the classically closo $[CB_nH_{n+1}]^-$ monocarbaborane anions, $[CB_5H_6]^-$ (known only as its conjugate acid CB₅H₇), together with the $[CB_9H_{10}]^-$, $[CB_{10}H_{11}]^-$ and $[CB_{11}H_{12}]^-$ anions, have been recognised for some 30 years.³ Of these, the $[CB_9H_{10}]^-$ and $[CB_{10}H_{11}]^-$ species and their derivatives attract much current attention.^{4,5} More recently, the $[CB_7H_8]^-$ species has been reported,⁶ but $[CB_6H_7]^-$ and $[CB_8H_9]^-$ have remained elusive. We now report three routes for the preparation of one of these last two missing species, viz. the nine-vertex [CB₈H₉]⁻ anion, in good yields. The first two routes are simple solid-state thermolyses, of Cs+[arachno-6-CB₉H₁₄] - and of Cs+[nido- $6-CB_9H_{12}]^{-,7}$ and the third is the straightforward oxidation of the neutral monocarbaborane nido-1-CB₈H₁₂^{8,9} with I₂ in the presence of NEt₃. The geometries and numbering systems for the ten-vertex nido and arachno cages, and for the nine-vertex closo and nido cages, are shown in Scheme 1: unlettered vertices represent BH(exo) units.

In the first method a sample of Cs⁺[*arachno*-CB₉H₁₄]⁻ (compound **1** in Scheme 1)⁷ is heated at 220 °C for 3 h, followed by dissolution of the product in (Me)₂CO, and filtration. Examination of the solution by NMR spectroscopy showed the [*closo*-4-CB₈H₉]⁻ anion (compound **2**; *ca*. 60%), and smaller quantities of the [*nido*-CB₉H₁₂]⁻ and [*closo*-CB₉H₁₀]⁻ anions (*ca*. 5 and 35% respectively); no starting anion **1** remained. Chromatographic separation on a silica column (30 cm × 2.5 cm) using MeCN–CH₂Cl₂ 5:95 as the eluting phase, followed by precipitation with [PMePh₃]+Cl⁻, thence resulted in crystalline [PMePh₃]+[CB₈H₉]⁻ (56% isolated). The second method consists of a similar heating of Cs⁺[*nido*-CB₉H₁₂]⁻ (compound **3**)⁷ at 220 °C for 3 h, again followed by dissolution of the product in (Me)₂CO and filtration. Examination by NMR

spectroscopy§ again showed the $[closo-CB_8H_9]^-$ anion (*ca*. 61% after purification as above), but now with smaller quantities of $[nido-CB_{10}H_{13}]^-$ (20%) and $[closo-CB_9H_{10}]^-$ (*ca*. 3%); no starting anion **3** remained. The by-products of the formation of $[CB_9H_{10}]^-$ by these two variants suggest a series of competing reactions. Thus, $[CB_9H_{14}]^-$ may lose H_2 to give $[CB_9H_{12}]^-$, and $[CB_9H_{12}]^-$ may lose H_2 to give $[CB_8H_{10}]^-$. Alternatively, $[CB_9H_{14}]^-$ may lose $\{BH_3\}$ to give $[CB_8H_9]^-$, and $[CB_9H_{12}]^-$ may lose $\{BH_3\}$ to give $[CB_8H_9]^-$, and $[CB_9H_{12}]^-$ may lose $\{BH_3\}$ to give $[CB_8H_9]^-$, and $[CB_9H_{12}]^-$ may add transient $\{BH_3\}$ to give $[CB_8H_9]^-$ directly. $[CB_9H_{12}]^-$ may add transient $\{BH_3\}$ to give $[CB_9H_{14}]^-$ would not add $\{BH_3\}$ so readily. These considerations suggest that the thermolysis conditions may be tailorable to favour between $[CB_8H_9]^-$ or $[CB_9H_{10}]^-$ formation. We currently devise experiments to examine for this possibility.

www.rsc.org/chemcomm

municatio

The other, efficient and fast, route for the preparation of the $[closo-4-CB_8H_9]^-$ anion **2** is based on the oxidation of *nido*-1-CB_8H_{12} (compound **4**).^{8,9} Treatment of neutral **4** with NEt₃ (3 mol equiv.) and I₂ (1 mol equiv.) in THF solution at -78 °C for

Scheme 1

 $[\]dagger$ Electronic supplementary information (ESI) available: NMR spectroscopy and calculated coordinates for the B3LYP/6-31G* symmetry-locked structure for [CB₈H₉]⁻. See http://www.rsc.org/suppdata/cc/b1/b103408c/ \ddagger Systematic IUPAC nomenclature: the *closo*-4-carbanonaborate(1–) anion; characterised crystallographically as its methyltriphenylphosphonium salt.

1 h, followed by stirring at room temperature for a further hour, resulted in the formation of the $[NHEt_3]^+$ salt of the $[closo-4-CB_8H_9]^-$ anion **2**. The reaction is consistent with the stoichiometry as in eqn. (1).

$$1-CB_8H_{12} \mathbf{4} + 3NEt_3 + I_2 \rightarrow 3[NHEt_3]^+ + [4-CB_8H_9]^- \mathbf{2} + 2I^-$$
(1)

The [NHEt₃]I by-product was removed by filtration, the filtrate evaporated to dryness, and then treated with aqueous KOH, followed by aqueous [PBuⁿ₄]Br. Extraction with CH₂Cl₂ and chromatographic separation of the CH₂Cl₂ extract on a silica column (25 cm \times 2.5 cm) using MeCN–CH₂Cl₂ 5:95 as eluting phase, thence gave crystalline [PBuⁿ₄]+[*closo*-4-CB₈H₉]– (75%). Mechanistically, the formation of anion **2** as in eqn. (1) seems to agree with a deprotonation of CB₈H₁₂ **4** by NEt₃ and thence oxidation of the transient [*nido*-1-CB₈H₁₁][–] anion with I₂. Closure of the nine-vertex *nido* cage by joining the B(9) vertex of **4** with the B(2) and B(5) vertices (Scheme 1), would yield the product configuration of **2**.

The structure of the $[closo-4-CB_8H_9]^-$ anion **2** was confirmed by a single-crystal X-ray diffraction analysis of the $[PMePh_3]^+$ salt (Fig. 1).¶ It has the classical tricapped trigonal prismatic structure of $[B_9H_9]^{2-}$, but with a carbon atom in a four-connectivity 4-position. As with the $[B_9H_9]^{2-}$ anion,¹⁰ the edges of the central trigonal prism, at 191.4(4)–200.4(4) pm, are at the longer end of typical interboron cluster bonding distances. NMR spectroscopy on a bulk sample was consistent with the structure derived from the single-crystal work.§¶ Like the $[CB_7H_8]^-$ anion,⁶ the new compound is a stronger reducing agent than the $[CB_9H_{10}]^-$ and $[CB_{11}H_{12}]^-$ congeners. It is similarly iodinated at the sites distal from carbon; thus monoiodination with elemental I₂ in CH₂Cl₂ solution gives [3-I-*closo*-4-CB₈H₈]⁻ and [5-I-*closo*-4-CB₈H₈]⁻.

Fig. 1 Crystallographically determined molecular structure of the [*closo*-4-CB₈H₉]⁻ anion in its [PMePh₃]⁺ salt. The crystal had two independent [PMePh₃]⁺[CB₈H₉]⁻ units per unit cell. One anion was disordered, the other not. The anion shown here is the undisordered one. Distances (in pm throughout) from C(4) to its adjacent B atoms are in the range 162.8(5)–164.6(5), and the corresponding distances from B(5) and B(6) 'caps' are in the range 165.4(5)–177.4(5). The triangular faces of the internal trigonal prism are longer at 191.4(4)–200.4(4) than the trigonal prism edge distances at 177 6.8(5)–180.0(5); correspondingly, the angles (in degrees throughout) subtended at C(4) fall into two sets: 65.2(2)–66.2(2), and 71.9(2)–75.8(2). Similarly, angles subtended at B(5) and B(6) are in two sets: 63.3(2)–65.0(2) and 67.9(2)–72.5(2).

These results, allied with efficient routes from $B_{10}H_{14}$ to the starting monocarbaboranes **1**, **3** and **4**,^{7,9,11} mean that the [*closo*-4-CB₈H₉]⁻ anion is now one of the most readily accessible *closo*-carboranes. Long the missing link between eight- and tenvertex $[1-CB_7H_8]^-$ and $[1-CB_9H_{10}]^-$, its chemistry should now contribute substantially to the development of carborane science. For example, the anion could act as a 'weakly coordinating anion' to complement [CB₉H₁₀]⁻ and [CB₁₀H₁₁]⁻, and their derivatives:⁴ it is also likely to be amenable to substitution and metallacarborane chemistries. We currently work on the optimisation of its synthesis and on the

development of other nine-vertex monocarbaborane chemistry.

B. Š. acknowledges an Alexander von Humboldt Stiftung (FRG) and we thank Professor Max Herberhold (University of Bayreuth) for his good offices. We acknowledge support from the UK EPSRC, the UK DTI, the Ministry of Education of the Czech Republic (Projects LN00A028 and LB98233), the Grant Agency of the Czech Academy of Sciences (Grants nos. A2032007 and A40320804) and the Grant Agencies of the Czech Republic (Grants no. 203/99/M037), as well as the Grant Agency of Charles University (Grant no. 203/00/B-CH/PrF) and the Supercomputing Centre of the Charles University in Prague for computer time.

Notes and references

 $\$ *NMR data*, 294–297 K, ordered as: assignment $\delta(^{11}\text{B})/\text{ppm}$, $[\delta(^{11}\text{H}), \{\delta(^{13}\text{C})/\text{ppm}$ where appropriate}], observed splitting from $^{1}J(^{11}\text{B}^{11}\text{H})/\text{Hz}$ (relative intensity in parentheses): for [PMePh_3]+[CB_8H_9]⁻ (CD_3CN solution): BH(5,6) +12.85, [+4.35], 145, (2BH); BH(1,2,7,8), -14.40, [+1.46], 150, (4BH); BH(3,9), -20.3, [+0.60], 135, (2BH); and CH(4), -, [+4.10], -, (1CH). For [PBu_4]+[CB_8H_9]⁻ (CDCl_3 solution): BH(5,6) +12.80, [+4.37], 145, (2BH); BH(1,2,7,8) -14.30, [+1.42], 148, (4BH); BH(3,9) -20.3, [+0.64], 136, (2BH); and CH(4), -, [+4.13, [+44.5 J(^{13}\text{C}^{-1}\text{H}] 182 \text{ Hz}], -, (1CH).

¶ *Crystal data* for [PMePh₃][CB₈H₉] (colourless, from EtOH/Et₂O at 290 K, 0.46 × 0.22 × 0.11 mm): C₂₀H₂₇B₈P, *M* = 384.87, monoclinic, space group *P*2₁/*a*, *a* = 14.7338(2), *b* = 14.1571(3), *c* = 22.7377(4) Å, β = 107.7840(10)°, *U* = 4516.17(14) Å³, *Z* = 8, Mo-K\alpha radiation, λ = 0.71073 Å, μ = 0.126 mm⁻¹, *T* = 150(2) K, *R*1 = 0.0549 for 6775 reflections with *I* > 2 σ (*I*), *wR*2 = 0.1491 for all 8821 independent data; methods and programs were standard and from the SHELX suite.¹²

CCDC 159456. See http://www.rsc.org/suppdata/cc/b1/b103408c/ for crystallographic data in CIF or other electronic format.

- 1 B. Štíbr, Chem. Rev., 1992, 92, 225.
- 2 V. I. Bregadze, Chem. Rev., 1992, 92, 209.
- T. Onak, R. P. Drake and G. B. Dunks, J. Am. Chem. Soc., 1965, 87, 2505;
 S. R. Prince and R. Schaeffer, Chem. Commun., 1968, 451;
 T. Onak, P. Matschei and E. Groszek, J. Chem. Soc. A, 1969, 1990;
 W. H. Knoth, J. Am. Chem. Soc., 1967, 89, 1274;
 W. H. Knoth, Inorg. Chem., 1973, 12, 785.
- 4 C. Reed, Acc. Chem. Res., 1998, 31, 133; S. Strauss, Chem. Rev., 1993, 93, 927.
- 5 P. Kaszynski, *Collect. Czech. Chem. Commun.*, 1999, **64**, 895; and references cited therein.
- 6 J. Plešek, T. Jelínek, B. Štíbr and S. Heřmánek, J. Chem. Soc., Chem. Commun., 1988, 348; T. Jelínek, B. Štíbr, J. Plešek, J. D. Kennedy and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1995, 431.
- 7 B. Brellochs, *Contemporary Boron Chemistry*, ed. M. G. Davidson, A. K. Hughes, T. B. Marder and K. Wade, Royal Society of Chemistry, Cambridge, UK, 2000, pp. 212–214.
- 8 K. Baše, S. Heřmánek and B. Štíbr, Chem. Ind. (London), 1977, 951; K. Baše, B. Štíbr, J. Dolanský and J. Duben, Collect. Czech.Chem. Commun., 1981, 46, 2345.
- 9 T. Jelínek, I. Kanerová, J. Holub, B. Štíbr, O. Tok and B. Wrackmeyer, in preparation.
- 10 J. Guggenberger, *Inorg. Chem.*, 1968, 7, 2260; M. E. O'Neill and K. Wade, *Polyhedron*, 1983, 2, 963.
- 11 B₁₀H₁₄ (12.4 g, 100 mmol) in hexane (200 cm³) was treated with 15% aqueous NaOH (500 cm3) with vigorous stirring at room temperature and cooled to 0 °C. 37% aqueous HCHO (containing 36.5 g HCHO, molar ratio $B_{10}H_{14}$: HCHO = 1 : 4.5) was added together with H_2O (30 cm³) over 1 h. The aqueous layer was separated and extracted with Et_2O (3 × 100 cm³). Addition of saturated aqueous CsCl (100 mmol) to the combined Et₂O extracts followed by evaporation of the Et₂O, filtration, and recrystallisation of the precipitate from hot H₂O gave Cs[CB₉H₁₄] (44%), as used in the thermolysis. For the CB₈H₁₂ route, $H_2O(100 \text{ cm}^3)$ was added, and the Et₂O removed by rotary evaporation, resulting in an aqueous solution of Na[CB₉H₁₄] [at this stage, precipitation with [NEt₄]Cl can be used to give [NEt₄][CB₉H₁₄] (48%)], which was added dropwise to a stirred mixture of aqueous HCl (ca. 4.5 M; 350 cm³), FeCl₃·6H₂O (65 g) and hexane (200 cm³), and stirred for 3 h. The hexane layer was separated and evaporated, and the resulting white solid sublimed to give CB_8H_{14} (5.4 g; 47%); which was converted to CB₈H₁₂ by dehydrogenation at 350 °C as in ref. 8.
- 12 G. M. Sheldrick, University of Göttingen, Germany, 1997G. M. Sheldrick, Bruker AXS Inc., Madison, WI, 1994 and 1998.